Pre- and postsynaptic properties of glutamatergic transmission in the immature inhibitory MNTB-LSO pathway.

نویسندگان

  • Daniel T Case
  • Deda C Gillespie
چکیده

The lateral superior olive (LSO) integrates excitatory inputs driven by sound arriving at the ipsilateral ear with inhibitory inputs driven by sound arriving at the contralateral ear in order to compute interaural intensity differences needed for localizing high-frequency sound sources. Specific mechanisms necessary for developmental refinement of the inhibitory projection, which arises from the medial nucleus of the trapezoid body (MNTB), have only been partially deciphered. The demonstration that immature MNTB-LSO synapses release glutamate has led to a model in which early glutamate neurotransmission plays a major role in inhibitory plasticity. We used whole cell electrophysiology in acute auditory brain stem slices of neonatal rats to examine glutamatergic transmission in the developing MNTB-LSO pathway. Unexpectedly, AMPA receptor (AMPAR)-mediated responses were prevalent at the earliest ages. We found a salient developmental profile for NMDA receptor (NMDAR) activation, described both by the proportion of total glutamate current and by current durations, and we found evidence for distinct release probabilities for GABA/glycine and glutamate in the MNTB-LSO pathway. The developmental profile of NMDAR is consistent with the possibility that the inhibitory MNTB-LSO pathway experiences a sensitive period, driven by cochlear activity and mediated by GluN2B-containing NMDARs, between postnatal days 3 and 9. Differing neurotransmitter release probabilities could allow the synapse to switch between GABA/glycinergic transmission and mixed glutamate/GABA/glycinergic transmission in response to changing patterns of spiking activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Title : Pre - and post - synaptic properties of glutamatergic transmission in the immature inhibitory

The lateral superior olive (LSO) integrates excitatory inputs driven by sound arriving at the ipsilateral ear with inhibitory inputs driven by sound arriving at the contralateral ear in order to compute interaural intensity differences needed for localizing high frequency sound sources. Specific mechanisms necessary for developmental refinement of the inhibitory projection, which arises from th...

متن کامل

NMDAR-Mediated Calcium Transients Elicited by Glutamate Co-Release at Developing Inhibitory Synapses

Before hearing onset, the topographic organization of the inhibitory sound localization pathway from the medial nucleus of the trapezoid body (MNTB) to the lateral superior olive (LSO) is refined by means of synaptic silencing and strengthening. During this refinement period MNTB-LSO synapses not only release GABA and glycine but also release glutamate. This co-released glutamate can elicit pos...

متن کامل

VGLUT3 does not synergize GABA/glycine release during functional refinement of an inhibitory auditory circuit

The vesicular glutamate transporter 3 (VGLUT3) is expressed at several locations not normally associated with glutamate release. Although the function of this protein has been generally elusive, when expressed in non-glutamatergic synaptic terminals, VGLUT3 can not only allow glutamate co-transmission but also synergize the action of non-glutamate vesicular transporters. Interestingly, in the i...

متن کامل

Developmental influence of glycinergic transmission: regulation of NMDA receptor-mediated EPSPs.

The influence of excitatory transmission on postsynaptic structure is well established in developing animals, but little is known about the role of synaptic inhibition. We addressed this issue in developing gerbils with two manipulations designed to decrease glycinergic transmission in an auditory nucleus, the lateral superior olive (LSO), before the onset of sound-evoked activity. First, contr...

متن کامل

Excitation by Axon Terminal GABA Spillover in a Sound Localization Circuit.

Synapses from neurons of the medial nucleus of the trapezoid body (MNTB) onto neurons of the lateral superior olive (LSO) in the auditory brainstem are glycinergic in maturity, but also GABAergic and glutamatergic in development. The role for this neurotransmitter cotransmission is poorly understood. Here we use electrophysiological recordings in brainstem slices from P3-P21 mice to demonstrate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 106 5  شماره 

صفحات  -

تاریخ انتشار 2011